Received 18 October 2005

Accepted 28 October 2005

Online 5 November 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Mei Dai,* Jin-Feng Huang and Hui-Ying Shen

College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China

Correspondence e-mail: dym@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.088 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(1,10-phenanthroline- $\kappa^2 N$,N)bis(thiosalicylato-1 $\kappa^2 O$,O': $2\kappa^2 O'$,S)dizinc(II)

In the title compound, $[Zn_2(C_7H_4O_2S)_2(C_{12}H_8N_2)_2]$, the Zn complex forms a centrosymmetric dimer with a Zn···Zn separation of 3.580 (1) Å. Each Zn atom is coordinated by two N atoms from the 1,10-phenanthroline (phen) ligand and by three O atoms and one S atom from the thiosalicylate ligands in a highly distorted octahedral geometry, with Zn–N distances of 2.119 (2) and 2.166 (2) Å, Zn–O distances in the range 2.161 (2)–2.329 (2) Å, and a Zn–S distance of 2.3034 (12) Å. There are π - π stacking interactions between the phen rings, forming a stacking arrangement along the *c* axis in the crystal structure.

Comment

The design and synthesis of supramolecular coordination polymer networks organized and held together by means of coordination covalent bonds, hydrogen bonds and π - π stacking interactions, has been a field of rapid growth because of their special physical properties and potential application in functional materials (Atwood *et al.*, 1996; Barton *et al.*, 1999). A number of promising supramolecular complexes have been designed and constructed from long flexible ligands (Luo *et al.*, 2003). While attempting to prepare a complex containing 2,2dithiodibenzoic acid ligands *via* a hydrothermal reaction, we did not obtain the expected complex but instead obtained the title compound, (I).

As shown in Fig. 1, each Zn atom in (I) is six-coordinated via two N atoms from the phen ligand and three O atoms and one S atom from the thiosalicylate ligands in a highly distorted octahedral geometry, with Zn-N distances of 2.119 (2) and

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the title molecule, showing the atom-labelling scheme and with displacement ellipsoids at the 40% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator 1 - x, y, $\frac{1}{2} - z$. H atoms have been omitted.

Figure 2

The extended structure of (I), formed through $\pi - \pi$ interactions between the phen rings (dashed lines). H atoms have been omitted.

2.166 (2) Å, Zn-O distances in the range 2.161 (2)-2.329 (2) Å, and a Zn-S distance of 2.3034 (12) Å.

The Zn complex forms a centrosymmetric dimer with a $Zn \cdot \cdot \cdot Zn$ separation of 3.580 (1) Å, indicating no direct metalmetal interaction. There are π - π stacking interactions between phen ligands, as shown in Fig. 2. Adjacent rings of phen are approximately parallel; the perpendicular spacing of the rings is 3.479 (4) Å, and the ring centroid-to-centroid distance is 3.700 (6) Å, close to the sum of the van der Waals radii of two C atoms (Bondi, 1964). Neighbouring dimers are connected by π - π interactions, forming a stacking arrangement.

Experimental

 $Zn(CH_3CO_2)_2 \cdot 2H_2O$ (1 mmol), 2,2-dithiodibenzoic acid (0.5 mmol) and 1,10-phenanthroline (1 mmol) were mixed in H₂O (15 ml) and heated at 433 K for 3 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature

3829 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0345P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 3.4919P]

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.021$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = -24 \rightarrow 24$

 $k = -12 \rightarrow 12$ $l = -23 \rightarrow 24$

3302 reflections with $I > 2\sigma(I)$

Crystal data

$[Zn_2(C_7H_4O_2S)_2(C_{12}H_8N_2)_2]$	$D_x = 1.585 \text{ Mg m}^{-3}$	
$M_r = 795.53$	Mo $K\alpha$ radiation	
Monoclinic, $C2/c$	Cell parameters from 826	
a = 18.785 (11) Å	reflections	
b = 9.581 (5) Å	$\theta = 3.1-27.5^{\circ}$	
c = 18.523 (10) Å	$\mu = 1.61 \text{ mm}^{-1}$	
$\beta = 90.924 \ (17)^{\circ}$	T = 293 (2) K	
V = 3333 (3) Å ³	Prism, yellow	
Z = 4	$0.40 \times 0.25 \times 0.10 \text{ mm}$	

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.623, T_{\max} = 0.851$ 6321 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ wR(F²) = 0.088 S = 1.103829 reflections 226 parameters H-atom parameters constrained

Table 1

Selected bond lengths (A)	1.
--------------------------	---	----

Zn1-N1	2.119 (2)	Zn1-S1 ⁱ	2.3034 (12)
Zn1-O2 ⁱ	2.161 (2)	Zn1-O2	2.329 (2)
Zn1-N2	2.166 (2)	S1-Zn1 ⁱ	2.3034 (12)
Zn1-O1	2.254 (2)	$O2-Zn1^{i}$	2.161 (2)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

C-bound H atoms were positioned geometrically and refined as riding on their parent atoms, with C-H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C).$

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was financially supported by the Foundation of the Ministry of Education of Fujian Province (grant No. JB03131).

References

- Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Voegtle, F. & Lehn, J.-M. (1996). Comprehensive Supramolecular Chemistry, Vol. 9. New York: Pergamon Press.
- Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C. & Yaghi, O. M. (1999). Chem. Mater. 11, 2633-2656.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-460.
- Luo, J., Hong, M., Wang, R., Yuan, D., Cao, R., Han, L., Xu, Y. & Lin, Z. (2003). Eur. J. Inorg. Chem. 3623-3632.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.